Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Curr Top Dev Biol ; 156: 201-243, 2024.
Article in English | MEDLINE | ID: mdl-38556424

ABSTRACT

Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.


Subject(s)
Heart , Mitochondria , Pregnancy , Female , Humans , Mitochondria/metabolism , Fetal Development , Fetus/metabolism , Embryo, Mammalian/metabolism , Energy Metabolism
2.
Cell ; 187(1): 204-215.e14, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38070508

ABSTRACT

Mounting evidence suggests metabolism instructs stem cell fate decisions. However, how fetal metabolism changes during development and how altered maternal metabolism shapes fetal metabolism remain unexplored. We present a descriptive atlas of in vivo fetal murine metabolism during mid-to-late gestation in normal and diabetic pregnancy. Using 13C-glucose and liquid chromatography-mass spectrometry (LC-MS), we profiled the metabolism of fetal brains, hearts, livers, and placentas harvested from pregnant dams between embryonic days (E)10.5 and 18.5. Our analysis revealed metabolic features specific to a hyperglycemic environment and signatures that may denote developmental transitions during euglycemic development. We observed sorbitol accumulation in fetal tissues and altered neurotransmitter levels in fetal brains isolated from hyperglycemic dams. Tracing 13C-glucose revealed disparate fetal nutrient sourcing depending on maternal glycemic states. Regardless of glycemic state, histidine-derived metabolites accumulated in late-stage fetal tissues. Our rich dataset presents a comprehensive overview of in vivo fetal tissue metabolism and alterations due to maternal hyperglycemia.


Subject(s)
Diabetes Mellitus , Diabetes, Gestational , Fetus , Animals , Female , Mice , Pregnancy , Diabetes Mellitus/metabolism , Fetus/metabolism , Glucose/metabolism , Placenta/metabolism , Diabetes, Gestational/metabolism
3.
bioRxiv ; 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37873297

ABSTRACT

During heart development, a well-characterized network of transcription factors initiates cardiac gene expression and defines the precise timing and location of cardiac progenitor specification. However, our understanding of the post-initiation transcriptional events that regulate cardiac gene expression is still incomplete. The PAF1C component Rtf1 is a transcription regulatory protein that modulates pausing and elongation of RNA Pol II, as well as cotranscriptional histone modifications. Here we report that Rtf1 is essential for cardiogenesis in fish and mammals, and that in the absence of Rtf1 activity, cardiac progenitors arrest in an immature state. We found that Rtf1's Plus3 domain, which confers interaction with the transcriptional pausing and elongation regulator Spt5, was necessary for cardiac progenitor formation. ChIP-seq analysis further revealed changes in the occupancy of RNA Pol II around the transcription start site (TSS) of cardiac genes in rtf1 morphants reflecting a reduction in transcriptional pausing. Intriguingly, inhibition of pause release in rtf1 morphants and mutants restored the formation of cardiac cells and improved Pol II occupancy at the TSS of key cardiac genes. Our findings highlight the crucial role that transcriptional pausing plays in promoting normal gene expression levels in a cardiac developmental context.

4.
Nat Commun ; 14(1): 5398, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669937

ABSTRACT

Hematopoietic progenitors are enriched in the endocardial cushion and contribute, in a Nkx2-5-dependent manner, to tissue macrophages required for the remodeling of cardiac valves and septa. However, little is known about the molecular mechanism of endocardial-hematopoietic transition. In the current study, we identified the regulatory network of endocardial hematopoiesis. Signal network analysis from scRNA-seq datasets revealed that genes in Notch and retinoic acid (RA) signaling are significantly downregulated in Nkx2-5-null endocardial cells. In vivo and ex vivo analyses validate that the Nkx2-5-Notch axis is essential for the generation of both hemogenic and cushion endocardial cells, and the suppression of RA signaling via Dhrs3 expression plays important roles in further differentiation into macrophages. Genetic ablation study revealed that these macrophages are essential in cardiac valve remodeling. In summary, the study demonstrates that the Nkx2-5/Notch/RA signaling plays a pivotal role in macrophage differentiation from hematopoietic progenitors.


Subject(s)
Endocardium , Macrophages , Histiocytes , Cell Differentiation , Tretinoin
5.
Front Physiol ; 13: 977735, 2022.
Article in English | MEDLINE | ID: mdl-36388109

ABSTRACT

The treatment of atrial fibrillation (AF) continues to be a significant clinical challenge. While genome-wide association studies (GWAS) are beginning to identify AF susceptibility genes (Gudbjartsson et al., Nature, 2007, 448, 353-357; Choi et al., Circ. Res., 2020, 126, 200-209; van Ouwerkerk et al., Circ. Res., 2022, 127, 229-243), non-genetic risk factors including physical, chemical, and biological environments remain the major contributors to the development of AF. However, little is known regarding how non-genetic risk factors promote the pathogenesis of AF (Weiss et al., Heart Rhythm, 2016, 13, 1868-1877; Chakraborty et al., Heart Rhythm, 2020, 17, 1,398-1,404; Nattel et al., Circ. Res., 2020, 127, 51-72). This is, in part, due to the lack of a robust and reliable animal model induced by non-genetic factors. The currently available models using rapid pacing protocols fail to generate a stable AF phenotype in rodent models, often requiring additional genetic modifications that introduce potential sources of bias (Schüttler et al., Circ. Res., 2020, 127, 91-110). Here, we report a novel murine model of AF using an inducible and tissue-specific activation of diphtheria toxin (DT)-mediated cellular injury system. By the tissue-specific and inducible expression of human HB-EGF in atrial myocytes, we developed a reliable, robust and scalable murine model of AF that is triggered by a non-genetic inducer without the need for AF susceptibility gene mutations.

6.
PLoS One ; 17(5): e0266647, 2022.
Article in English | MEDLINE | ID: mdl-35617323

ABSTRACT

Open source analytical software for the analysis of electrophysiological cardiomyocyte data offers a variety of new functionalities to complement closed-source, proprietary tools. Here, we present the Cardio PyMEA application, a free, modifiable, and open source program for the analysis of microelectrode array (MEA) data obtained from cardiomyocyte cultures. Major software capabilities include: beat detection; pacemaker origin estimation; beat amplitude and interval; local activation time, upstroke velocity, and conduction velocity; analysis of cardiomyocyte property-distance relationships; and robust power law analysis of pacemaker spatiotemporal instability. Cardio PyMEA was written entirely in Python 3 to provide an accessible, integrated workflow that possesses a user-friendly graphical user interface (GUI) written in PyQt5 to allow for performant, cross-platform utilization. This application makes use of object-oriented programming (OOP) principles to facilitate the relatively straightforward incorporation of custom functionalities, e.g. power law analysis, that suit the needs of the user. Cardio PyMEA is available as an open source application under the terms of the GNU General Public License (GPL). The source code for Cardio PyMEA can be downloaded from Github at the following repository: https://github.com/csdunhamUC/cardio_pymea.


Subject(s)
Myocytes, Cardiac , Software , Cardiac Electrophysiology , Microelectrodes
7.
PLoS One ; 17(3): e0263976, 2022.
Article in English | MEDLINE | ID: mdl-35286321

ABSTRACT

Power laws are of interest to several scientific disciplines because they can provide important information about the underlying dynamics (e.g. scale invariance and self-similarity) of a given system. Because power laws are of increasing interest to the cardiac sciences as potential indicators of cardiac dysfunction, it is essential that rigorous, standardized analytical methods are employed in the evaluation of power laws. This study compares the methods currently used in the fields of condensed matter physics, geoscience, neuroscience, and cardiology in order to provide a robust analytical framework for evaluating power laws in stem cell-derived cardiomyocyte cultures. One potential power law-obeying phenomenon observed in these cultures is pacemaker translocations, or the spatial and temporal instability of the pacemaker region, in a 2D cell culture. Power law analysis of translocation data was performed using increasingly rigorous methods in order to illustrate how differences in analytical robustness can result in misleading power law interpretations. Non-robust methods concluded that pacemaker translocations adhere to a power law while robust methods convincingly demonstrated that they obey a doubly truncated power law. The results of this study highlight the importance of employing comprehensive methods during power law analysis of cardiomyocyte cultures.


Subject(s)
Myocytes, Cardiac , Pacemaker, Artificial , Cell Culture Techniques , Stem Cells
8.
Sci Rep ; 11(1): 8669, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33883682

ABSTRACT

The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report that glucose metabolism is a determinant of regenerative capacity in the neonatal mammalian heart. Cardiac-specific overexpression of Glut1, the embryonic form of constitutively active glucose transporter, resulted in an increase in glucose uptake and concomitant accumulation of glycogen storage in postnatal heart. Upon cryoinjury, Glut1 transgenic hearts showed higher regenerative capacity with less fibrosis than non-transgenic control hearts. Interestingly, flow cytometry analysis revealed two distinct populations of ventricular cardiomyocytes: Tnnt2-high and Tnnt2-low cardiomyocytes, the latter of which showed significantly higher mitotic activity in response to high intracellular glucose in Glut1 transgenic hearts. Metabolic profiling shows that Glut1-transgenic hearts have a significant increase in the glucose metabolites including nucleotides upon injury. Inhibition of the nucleotide biosynthesis abrogated the regenerative advantage of high intra-cardiomyocyte glucose level, suggesting that the glucose enhances the cardiomyocyte regeneration through the supply of nucleotides. Our data suggest that the increase in glucose metabolism promotes cardiac regeneration in neonatal mouse heart.


Subject(s)
Glucose Transporter Type 1/metabolism , Glucose/metabolism , Heart/physiology , Regeneration , Animals , Animals, Newborn/physiology , Female , Glucose Transporter Type 1/physiology , Male , Metabolomics , Mice , Mice, Inbred ICR , Mice, Transgenic , Myocytes, Cardiac/metabolism , Nucleotides/metabolism
9.
Dev Biol ; 475: 222-233, 2021 07.
Article in English | MEDLINE | ID: mdl-33577830

ABSTRACT

Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.


Subject(s)
Glucose/metabolism , Heart/embryology , Hyperglycemia/physiopathology , Animals , Cell Differentiation/genetics , Female , Heart/physiopathology , Heart Defects, Congenital/genetics , Humans , Neural Crest/physiopathology , Organogenesis/genetics , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology
10.
Dev Cell ; 48(5): 617-630.e3, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30799229

ABSTRACT

During mammalian embryogenesis, de novo hematopoiesis occurs transiently in multiple anatomical sites including the yolk sac, dorsal aorta, and heart tube. A long-unanswered question is whether these local transient hematopoietic mechanisms are essential for embryonic growth. Here, we show that endocardial hematopoiesis is critical for cardiac valve remodeling as a source of tissue macrophages. Colony formation assay from explanted heart tubes and genetic lineage tracing with the endocardial specific Nfatc1-Cre mouse revealed that hemogenic endocardium is a de novo source of tissue macrophages in the endocardial cushion, the primordium of the cardiac valves. Surface marker characterization, gene expression profiling, and ex vivo phagocytosis assay revealed that the endocardially derived cardiac tissue macrophages play a phagocytic and antigen presenting role. Indeed, genetic ablation of endocardially derived macrophages caused severe valve malformation. Together, these data suggest that transient hemogenic activity in the endocardium is indispensable for the valvular tissue remodeling in the heart.


Subject(s)
Endocardium/metabolism , Gene Expression Regulation, Developmental/physiology , Heart Valves/cytology , Macrophages/metabolism , Animals , Embryo, Mammalian/metabolism , Hematopoiesis/physiology , Mesoderm/metabolism , Mice, Transgenic , NFATC Transcription Factors/metabolism , Yolk Sac
11.
Epigenetics ; 13(10-11): 1013-1026, 2018.
Article in English | MEDLINE | ID: mdl-30240284

ABSTRACT

Stem cell-based cardiogenesis has become a powerful tool to enhance our understanding of cardiac development and test novel therapeutics for cardiovascular diseases. However, transcriptional and epigenetic regulation of multiple transitional stages from pluripotent cells to committed cardiomyocytes has not yet been fully characterized. To characterize how transcription factors, lincRNAs and DNA methylation change at temporal developmental stages, and identify potential novel regulators during cardiogenesis. We utilized a previously reported protocol that yields human cardiomyocytes (hCM) with more than 90% purity from human Embryonic Stem Cells (hESC). Leveraging the purity of cells resulting from this protocol, we systematically examined how gene expression and DNA methylation programs change at temporal developmental stages during cardiogenesis. Our results provide a comprehensive view of expression changes during cardiogenesis that extend previous studies, allowing us to identify key transcription factors as well as lincRNAs that are strongly associated with cardiac differentiation. Moreover, we incorporated a simple but powerful method to screen for novel regulators of cardiogenesis solely based on expression changes and found four novel cardiac-related transcription factors, i.e., SORBS2, MITF, DPF3, and ZNF436, which have no or few prior literature reports and we were able to validate using siRNA. Our strategy of identifying novel regulators of cardiogenesis can also be easily implemented in other stem cell-based systems. Our results provide a valuable resource for understanding cardiogenesis that extends previous findings by leveraging the purity of our cell lines, which allowed us to identify four novel cardiac-related regulators.


Subject(s)
DNA Methylation , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Transcriptome , Adaptor Proteins, Signal Transducing , Cell Differentiation , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Human Embryonic Stem Cells/cytology , Humans , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Myocytes, Cardiac/cytology , RNA-Binding Proteins , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Virology ; 515: 176-190, 2018 02.
Article in English | MEDLINE | ID: mdl-29304470

ABSTRACT

Efferocytosis, the phagocytic clearance of apoptotic cells, can provide host protection against certain types of viruses by mediating phagocytic clearance of infected cells undergoing apoptosis. It is known that HIV-1 induces apoptosis and HIV-1-infected cells are efferocytosed by macrophages, although its molecular mechanisms are unknown. To elucidate the roles that efferocytosis of HIV-1-infected cells play in clearance of infected cells, we sought to identify molecules that mediate these processes. We found that protein S, present in human serum, and its homologue, Gas6, can mediate phagocytosis of HIV-1-infected cells by bridging receptor tyrosine kinase Mer, expressed on macrophages, to phosphatidylserine exposed on infected cells. Efferocytosis of live infected cells was less efficient than dead infected cells; however, a significant fraction of live infected cells were phagocytosed over 12h. Our results suggest that efferocytosis not only removes dead cells, but may also contribute to macrophage removal of live virus producing cells.


Subject(s)
HIV Infections/metabolism , HIV Infections/physiopathology , HIV-1/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Protein S/metabolism , Animals , HIV Infections/genetics , HIV Infections/virology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Macrophages/cytology , Macrophages/metabolism , Phagocytosis , Protein S/genetics
13.
Stem Cell Reports ; 10(1): 243-256, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29290627

ABSTRACT

Transition from primed to naive pluripotency is associated with dynamic changes in transposable element (TE) expression and demethylation of imprinting control regions (ICRs). In mouse, ICR methylation and TE expression are each regulated by TRIM28; however, the role of TRIM28 in humans is less clear. Here, we show that a null mutation in TRIM28 causes significant alterations in TE expression in both the naive and primed states of human pluripotency, and phenotypically this has limited effects on self-renewal, instead causing a loss of germline competency. Furthermore, we discovered that TRIM28 regulates paternal ICR methylation and chromatin accessibility in the primed state, with no effects on maternal ICRs. Taken together, our study shows that abnormal TE expression is tolerated by self-renewing human pluripotent cells, whereas germline competency is not.


Subject(s)
DNA Methylation , DNA Transposable Elements , Genomic Imprinting , Mutation , Pluripotent Stem Cells/metabolism , Tripartite Motif-Containing Protein 28/genetics , Animals , Cell Line , Humans , Mice , Pluripotent Stem Cells/cytology , Tripartite Motif-Containing Protein 28/metabolism
14.
Elife ; 62017 12 12.
Article in English | MEDLINE | ID: mdl-29231167

ABSTRACT

The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.


Subject(s)
Embryonic Stem Cells/cytology , Glucose/pharmacology , Muscle Development/drug effects , Myocardium/cytology , Myocytes, Cardiac/cytology , Nucleotides/biosynthesis , Animals , Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pentose Phosphate Pathway , Pregnancy , Sweetening Agents/pharmacology
15.
Sci Rep ; 7: 43210, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266620

ABSTRACT

Stem cell-derived cardiomyocytes provide a promising tool for human developmental biology, regenerative therapies, disease modeling, and drug discovery. As human pluripotent stem cell-derived cardiomyocytes remain functionally fetal-type, close monitoring of electrophysiological maturation is critical for their further application to biology and translation. However, to date, electrophysiological analyses of stem cell-derived cardiomyocytes has largely been limited by biologically undefined factors including 3D nature of embryoid body, sera from animals, and the feeder cells isolated from mouse. Large variability in the aforementioned systems leads to uncontrollable and irreproducible results, making conclusive studies difficult. In this report, a chemically-defined differentiation regimen and a monolayer cell culture technique was combined with multielectrode arrays for accurate, real-time, and flexible measurement of electrophysiological parameters in translation-ready human cardiomyocytes. Consistent with their natural counterpart, amplitude and dV/dtmax of field potential progressively increased during the course of maturation. Monolayer culture allowed for the identification of pacemaking cells using the multielectrode array platform and thereby the estimation of conduction velocity, which gradually increased during the differentiation of cardiomyocytes. Thus, the electrophysiological maturation of the human pluripotent stem cell-derived cardiomyocytes in our system recapitulates in vivo development. This system provides a versatile biological tool to analyze human heart development, disease mechanisms, and the efficacy/toxicity of chemicals.


Subject(s)
Cell Differentiation , Electrophysiological Phenomena , Myocytes, Cardiac/physiology , Pluripotent Stem Cells/physiology , Cell Culture Techniques , Humans
16.
Biochim Biophys Acta ; 1863(7 Pt B): 1937-47, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26828773

ABSTRACT

Endocardial development involves a complex orchestration of cell fate decisions that coordinate with endoderm formation and other mesodermal cell lineages. Historically, investigations into the contribution of endocardium in the developing embryo was constrained to the heart where these cells give rise to the inner lining of the myocardium and are a major contributor to valve formation. In recent years, studies have continued to elucidate the complexities of endocardial fate commitment revealing a much broader scope of lineage potential from developing endocardium. These studies cover a wide range of species and model systems and show direct contribution or fate potential of endocardium giving rise to cardiac vasculature, blood, fibroblast, and cardiomyocyte lineages. This review focuses on the marked expansion of knowledge in the area of endocardial fate potential. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Proliferation , Endocardium/physiology , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Animals , Endocardium/embryology , Endocardium/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/embryology , Endothelium, Vascular/metabolism , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/physiology , Morphogenesis , Phenotype
17.
Cell Stem Cell ; 18(4): 533-40, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26877224

ABSTRACT

Mutations in DMD disrupt the reading frame, prevent dystrophin translation, and cause Duchenne muscular dystrophy (DMD). Here we describe a CRISPR/Cas9 platform applicable to 60% of DMD patient mutations. We applied the platform to DMD-derived hiPSCs where successful deletion and non-homologous end joining of up to 725 kb reframed the DMD gene. This is the largest CRISPR/Cas9-mediated deletion shown to date in DMD. Use of hiPSCs allowed evaluation of dystrophin in disease-relevant cell types. Cardiomyocytes and skeletal muscle myotubes derived from reframed hiPSC clonal lines had restored dystrophin protein. The internally deleted dystrophin was functional as demonstrated by improved membrane integrity and restoration of the dystrophin glycoprotein complex in vitro and in vivo. Furthermore, miR31 was reduced upon reframing, similar to observations in Becker muscular dystrophy. This work demonstrates the feasibility of using a single CRISPR pair to correct the reading frame for the majority of DMD patients.


Subject(s)
CRISPR-Cas Systems/genetics , Dystrophin/metabolism , Gene Deletion , Gene Editing/methods , Induced Pluripotent Stem Cells/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Animals , Dystrophin/deficiency , Dystrophin/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/pathology , Mice , Mice, SCID , Muscle, Skeletal/cytology , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology
18.
J Exp Med ; 212(5): 633-48, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25870201

ABSTRACT

Fluid shear stress promotes the emergence of hematopoietic stem cells (HSCs) in the aorta-gonad-mesonephros (AGM) of the developing mouse embryo. We determined that the AGM is enriched for expression of targets of protein kinase A (PKA)-cAMP response element-binding protein (CREB), a pathway activated by fluid shear stress. By analyzing CREB genomic occupancy from chromatin-immunoprecipitation sequencing (ChIP-seq) data, we identified the bone morphogenetic protein (BMP) pathway as a potential regulator of CREB. By chemical modulation of the PKA-CREB and BMP pathways in isolated AGM VE-cadherin(+) cells from mid-gestation embryos, we demonstrate that PKA-CREB regulates hematopoietic engraftment and clonogenicity of hematopoietic progenitors, and is dependent on secreted BMP ligands through the type I BMP receptor. Finally, we observed blunting of this signaling axis using Ncx1-null embryos, which lack a heartbeat and intravascular flow. Collectively, we have identified a novel PKA-CREB-BMP signaling pathway downstream of shear stress that regulates HSC emergence in the AGM via the endothelial-to-hematopoietic transition.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Embryo, Mammalian/embryology , Hematopoietic Stem Cells/metabolism , Signal Transduction/physiology , Animals , Bone Morphogenetic Proteins/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Embryo, Mammalian/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hematopoietic Stem Cells/cytology , Mesonephros/cytology , Mesonephros/embryology , Mice , Mice, Mutant Strains , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism
19.
Elife ; 42015 Jan 15.
Article in English | MEDLINE | ID: mdl-25588501

ABSTRACT

Tightly regulated Ca(2+) homeostasis is a prerequisite for proper cardiac function. To dissect the regulatory network of cardiac Ca(2+) handling, we performed a chemical suppressor screen on zebrafish tremblor embryos, which suffer from Ca(2+) extrusion defects. Efsevin was identified based on its potent activity to restore coordinated contractions in tremblor. We show that efsevin binds to VDAC2, potentiates mitochondrial Ca(2+) uptake and accelerates the transfer of Ca(2+) from intracellular stores into mitochondria. In cardiomyocytes, efsevin restricts the temporal and spatial boundaries of Ca(2+) sparks and thereby inhibits Ca(2+) overload-induced erratic Ca(2+) waves and irregular contractions. We further show that overexpression of VDAC2 recapitulates the suppressive effect of efsevin on tremblor embryos whereas VDAC2 deficiency attenuates efsevin's rescue effect and that VDAC2 functions synergistically with MCU to suppress cardiac fibrillation in tremblor. Together, these findings demonstrate a critical modulatory role for VDAC2-dependent mitochondrial Ca(2+) uptake in the regulation of cardiac rhythmicity.


Subject(s)
Calcium/metabolism , Heart Rate , Heart/physiopathology , Mitochondria/metabolism , Voltage-Dependent Anion Channel 2/metabolism , Zebrafish Proteins/metabolism , Zebrafish/physiology , Amino Acid Sequence , Animals , Calcium Signaling/drug effects , Embryo, Mammalian/metabolism , Heart Rate/drug effects , Mitochondria/drug effects , Molecular Sequence Data , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Video Recording , Voltage-Dependent Anion Channel 2/chemistry , Zebrafish/embryology , Zebrafish Proteins/chemistry
20.
Circ Res ; 114(7): 1103-13, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24563458

ABSTRACT

RATIONALE: Tight control of cardiomyocyte proliferation is essential for the formation of four-chambered heart. Although human mutation of NKX2-5 is linked to septal defects and atrioventricular conduction abnormalities, early lethality and hemodynamic alteration in the mutant models have caused controversy as to whether Nkx2-5 regulates cardiomyocyte proliferation. OBJECTIVE: In this study, we circumvented these limitations by atrial-restricted deletion of Nkx2-5. METHOD AND RESULTS: Atrial-specific Nkx2-5 mutants died shortly after birth with hyperplastic working myocytes and conduction system including two nodes and internodal tracts. Multicolor reporter analysis revealed that Nkx2-5-null cardiomyocytes displayed clonal proliferative activity throughout the atria, indicating the suppressive role of Nkx2-5 in cardiomyocyte proliferation after chamber ballooning stages. Transcriptome analysis revealed that aberrant activation of Notch signaling underlies hyperproliferation of mutant cardiomyocytes, and forced activation of Notch signaling recapitulates hyperproliferation of working myocytes but not the conduction system. CONCLUSIONS: Collectively, these data suggest that Nkx2-5 regulates the proliferation of atrial working and conduction myocardium in coordination with Notch pathway.


Subject(s)
Cell Proliferation , Heart Atria/metabolism , Heart Conduction System/metabolism , Homeodomain Proteins/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/metabolism , Animals , Heart Atria/cytology , Heart Conduction System/cytology , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology , Receptors, Notch/metabolism , Transcription Factors/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...